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Abstract - We consider the inverse problem of identifying a Robin coefficient by performing measure-
ments on some part of the boundary. By using a Kohn and Vogelius cost function, the inverse problem
is turned into an optimisation one, which is proved to be stable with respect to the data. Robustness
of the so obtained algorithm is also proved. Further investigations are related the recovery of the fast
variations of the Robin coefficient, which are relevant to locate the corrosion and evaluate its level.

1 The Robin inverse problem

Corrosion of materials impacts the impedance coefficient, which intervines in a Robin boundary condi-
tion, and identifying this coefficient may thus be a way to locate the corrosion, and possibly evaluate its
level, in some structure by an electric impedance tomography process. The forward problem is modelled
by the Laplace equation, with a Robin boundary condition on the possibly corroded part of the bound-
ary, whereas we hold two boundary conditions on the remaining part of the boundary : a Neumann one
standing for the imposed current flux, and a Dirichlet one standing for the measured potential.

Let Ω be a connected bounded domain of R2. The boundary ∂Ω is assumed to be a C1,β Jordan curve,
for some β ∈]0, 1[. Morever, let γ and ΓN be two non empty connected open subsets of ∂Ω such that:

∂Ω = γ ∪ ΓN

The inverse problem (IP) we are dealing with is the following:
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Given a prescribed flux φ 6≡ 0 and measurements f on ΓN ,
Find a function q on γ such that the solution u of

(NP)
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∆u = 0 in Ω,
∂u

∂n
= φ on ΓN

∂u

∂n
+ qu = 0 on γ

also satisfies u|ΓN

= f

We shall assume that φ ∈ L2(ΓN ) and q belongs to a slightly restricted set of admissible parameters
Qad, defined by:

Qad =
{

q ∈ H1(γ), such that ‖q‖1,γ ≤ c and q ≥ c
′

χK

}

where c and c′ are two positive constants, and K is a nonempty connected open subset of γ such that
∂γ ∩K = ∅.

For q ∈ Qad, we shall denote by uD(q, f) the solution of the following Robin-Dirichlet problem (DP)
using the measurements f as a Dirichlet data:
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(DP)






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∆u = 0 in Ω
u = f on ΓN

∂u

∂n
+ q u = 0 on γ

and by uN (q) the solution of the Neumann problem (NP ) associated to q. The solution of the inverse
problem (IP ) will be denoted by q̄.

J(q) =

∫

Ω

|∇uN (q)−∇uD(q, f)|2 +

∫

γ

q |uN (q) − uD(q, f)|2

Referring to [4], the function J has a unique minimum which is nothing but the solution q̄ of the inverse
problem (IP) , which is thus turned to the following optimization one:

(OP)

{

Find q̄ ∈ Qad such that
J(q̄) 6 J(q) ∀ q ∈ Qad.

In order to solve the above problem using a descent method, we compute the Gâteaux-derivative of the
cost function J with respect to the unknown Robin coefficient q [4].

lim
h→0+

J(q + hq′)− J(q)

h
=

∫

γ

q′
[

(uD(q, f))2 − (uN (q))2
]

Thanks to this result, we are able to carry out a gradient algorithm in order to solve the optimization
problem (OP ). At each step of the algorithm, we need to compute the Robin-Dirichlet solution uD(q, f),
and the Robin-Neumann one uN (q), no additional adjoint problem being needed in order to compute the
gradient of the cost function.

Results obtained are of three kinds:

Stability of the inverse problem [3] The inverse problem (IP ) has been proved to hold a logarithmic
stability, which means that the misfit between two solutions q1 and q2 related to a close and smooth
enough pair of data (f1, f2) verify :

‖q1 − q2‖0,γ ≤ C ε (‖f1 − f2‖1,ΓN
)

where C is some constant and ε a logarithmically behaving function, namely :

ε(x) =
2 + ρ log 1/x

ρ log 1/x

Stability of the optimization problem [2] The optimization problem (OP ) is proved to have solu-
tions even though the inverse problem (IP ) has not (case of uncompatible data), and these solutions

depend continuously on the data. Given be a sequence (fn)n∈N of “measurements” in H
1
2 (ΓN ), we

thus have:
lim
n→∞

‖fn − f‖ 1
2
,M = 0 =⇒ lim

n→∞
‖qn − q̄‖L2(γ) = 0

Robustness of the algorithm The Kohn-Vogelius based algorithm turns out to be robust, which
means that noisy data f ε ∈ L∞(ΓN ) do produce, after having been properly smoothed in a
B-splines basis, impedances qε that converge:

lim
ε→∞

‖fε − f‖L∞(ΓN ) = 0 =⇒ lim
ε→∞

‖qε − q̄‖L∞(γ) = 0

So far, no quantitative estimates on the robustness have been obtained. The issue is under study, but
numerical results show a very good behaviour of the algorithm to that respect.

Actually, its regularizing properties even turn out to be excessive, since the impedance oscillations -
which provide with valuable information on the corrosion levels - are rubbed out. Several methods have
therefore been tested in order to recover further information on these oscillations.
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• Relaxation on a Fourier basis is preferrable to global descent methods, for these latters ignore the
higher frequencies which are directions of slow energy decreases.

• Anti-dumping, which means enhancing higher frequencies, may also be of some help to that end,
although it is done in an heuristic way and cannot thus be controlled.

• Finally, considering the KV function as a regularizer, rather than the cost function itself, also brings
a better recovery of the impedance variations.

Still, none of these methods is totally satisfactory, for what they come up with is nothing much better
than the mean value of the impedance. Capturing its oscillations needs thus to make use, in a second
step of the algorithm, of an alternative method.
We now decompose the impedance to be recovered in two parts, the first one standing for its mean value,
and the second for its “fast variations”:

q = q1 + q2

Having recovered the mean value q1 by using the above described method, we now built a new cost
function using regularization on the second part q2, in the space G introduced by Y. Meyer [6], and which
has been succesfully used to recover textures in image processing since it allows oscillations:

G = {q ∈ L2(γ) ; q(s) = h′(s), h ∈ L∞(γ) ; h = 0 on ∂γ}

The space G can also be characterized [6] as follows:

G = {q ∈ L2(γ) ;

∫

γ

q = 0}

and norm of G is provided by:
‖q‖G = inf

h′=q
‖h‖L∞(γ)

The non differentiable cost function to be minimized is given by

J1(q2) =
1

2
‖uN (q) − f‖2L2(ΓN )

+
ε

2
‖q2‖

2
G

Besides the difficulties related to the L∞ norm, the dependence of u on q adds non linearity to the above
functional. This is the reason why we shall transform it a little bit in order to make its handling through
an optimization process easier.

1.1 Identification of the oscillatory coefficients

Let q1 be the “mean value” of the Robin coefficient, obtained as a result of the Kohn and Vogelius
algorithm. We are now going to use q1 as a first guess in the forthcoming algorithm.
Denoting by g the quantity

g = − q uN (q)

uN (q) also solves the following full Neumann problem:

(Pg)
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∆v(g) = 0 in Ω,

∂v(g)

∂n
= φ on ΓN ,

∂v(g)

∂n
= g on γ,

∫

ΓN

v(g) =

∫

ΓN

f,

where the pair (φ, g) of Neumann boundary conditions obviously verify:

∫

γ

g +

∫

ΓN

φ = 0
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Rather than driving our minimization algorithm by q, let us drive it by g, since the dependence of v(g) is
affine with respect to g. Should we calculate the “right” g (which means the one such that v(g) = uN (q)),
we would immediately derive q from it that

q = −
g

v(g)

Up to a constant g is an element of G. Actually, g̃ is given by

g̃ = g +
1

meas(γ)

∫

ΓN

φ

In order to find out the “right” g, one needs to minimize the discrepancy between v(g) and the measure-
ments, which can be done by a least squares method, with an appropriate additional regularization. We
shall use the following:

J2(g̃) =
1

2
‖v(g) − f‖2L2(ΓN )

+
ε

2
‖g̃‖2G

Now, let g0 = −
1

meas(γ)

∫

ΓN

φ, consider v0 = v(g0) and define

w(g̃) = v(g) − v0

w(g̃) thus solves the following problem:
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∆w(g̃) = 0 in Ω,

∂w(g̃)

∂n
= 0 on ΓN ,

∂w(g̃)

∂n
= g̃ on γ,

∫

ΓN

w(g̃) = 0,

which makes w(g̃) linear with respect to g̃. Moreover, w(g̃) should fit the data f0 in order that v(g) fits
the measurements f :

f0 = f − v0 |ΓN

Now, the cost function we are trying to minimize over G can also be written as

J2(g̃) =
1

2
‖w(g̃) − f0‖

2
L2(ΓN )

+
ε

2
‖g̃‖2G

Considering that ‖g̃‖G = ‖h‖L∞(γ) where h is the single function belonging to H1
0 (γ) such that

∂h

∂τ
= g̃,

our cost function can also be written as

J3(h) := J2(g̃) =
1

2
‖w(g(h)) − f0‖

2
L2(ΓN )

+
ε

2
‖h‖2L∞(γ)

where wh := w(g(h)) solves the problem:

(Ph)
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∆wh = 0 in Ω,

∂wh

∂n
= 0 on ΓN ,

∂wh

∂n
=

∂h

∂τ
on γ,

∫

ΓN

wh = 0.

The L∞ norm in its expression makes J3 non differentiable, which may cause troubles in its numerical
handling. A similar (though finite dimensional) problem has been recently tackled by Chaabane and
Kunisch [5], who solved it by pseudo dualization, which consists in finding out an easier to handle
minimization problem, the dual problem which is the one we are dealing with. After properly discretizing
our problem, we shall be able to use their technique.
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1.2 The discrete minimization problem

In this section we shall suppose that the domain Ω is polygonal, and its boundary Γ is discretized by
(n+ 1) points (θi)i=0,···,n+1 with θ0 = θn+1. Moreover, the (k + 1) points (θi)i=0,···,k are situated on γ,
whereas (θi)i=k,...,n+1 are situated on ΓN . Points θ0 and θk are then the two connecting points between
the two of the parts of the boundary, ΓN and γ.
Let us denote by (χi)i=0,···,n the piecewise linear shape functions defined by χi(θj) = δij for i, j =
0, · · · , n.

Since the discrete- h function we are trying to recover is such that h|∂γ = 0, it spans over the shape
functions (χi)i=1,···,k−1:

h =

k−1
∑

i=1

hi χi

where hi = h(θi) ; i = 1, · · · , k − 1. From the discretization of the linear problem (Ph) using piecewise
linear finite elements, we derive a (k − 1)× (n+ 2− k) matrix M such that:

wh
|ΓN

= M h =
k−1
∑

i=1

hiMχi =
k−1
∑

i=1

hi wi

where (wi)i=1,···,k−1 solve problems (Pi) for i = 1, · · · , k − 1.

(Pi)
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∆wi = 0 in Ω,

∂wi

∂n
= 0 on ΓN ,

∂wi

∂n
=

∂χi
∂τ

on γ,

∫

ΓN

wi = 0.

Let us define:
αij = wi(θj) ; i = 1, · · · , k − 1 and j = k, · · · , n+ 1

It follows that:

wi|ΓN
=

n+1
∑

j=k

αij χj

and consequently:

wh|ΓN
=

k−1
∑

i=1

n+1
∑

j=k

(αij hi)χj

The discrete optimization problem we are now dealing with is the following:

(OPd)







min

(

1

2
‖M h − f0‖

2
L2(Rn+2−k) +

ε

2
‖h‖2L∞(Rk−1)

)

h ∈ Rk−1

We recall that f0 = f − u0 ∈ L2(ΓN ) , which leads to its following discretization:

f0 =

n+1
∑

i=k

f i0 χi

with f i0 = f0(θi), for i = k, · · · n+ 1.

The continuous operator M is injective since M h = 0 ⇒
∂h

∂τ
= 0 on γ, and thus h = 0 since h vanishes

at both extremal points of γ. So the matrixM will be non–singular, provided n and k are properly chosen
(n+ 2− k ≥ k − 1). Considered as an operator mapping Rk−1 on R(M), M is therefore invertible. Let
M−1 be its inverse, which operates on R(M), which is isomorphic to Rk−1 since its dimension is k − 1,
and let M−∗ be its adjoint operator. The main result of this section is the following:
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Theorem 1.1 Problem (OPd) has a unique solution h ∈ Rk−1 and it is the dual problem of the following:

(OPd−∗)







min

(

1

2
‖M−∗ z‖2L2(Rn+2−k)+ < z,M−1f0 > +

1

2 ε
‖z‖2L1(Rk−1)

)

z ∈ Rk−1

This result implies solving a total variation like problem, for which several methods have already been
developed. This work is currently on the way, and we expect some numerical results to be presented
during the conference.

2 Conclusions

In this contribution, we have first presented an algorithm, based on the Kohn and Vogelius cost function,
which is an energy discrepancy between two boundary value problems which can be solved from the
precribed flux and the measured data, in order to retrieve the Robin coefficient in the related inverse
problem. The algorithm has been proved to be stable and robust with respect to noisy data. The price to
pay for that robustness, is however excessive in the present case, since the algorithm rubs out oscillations
of the unknown coefficient, which are helpful for the location of the corrosion, and the evaluation of
its effects. This is the reason why we have been driven to study, as a second step of the algorithm, a
method to retrieve the fast variations of the coefficient, once its mean value has been recovered by the
KV algorithm. This is done through regularization in a space introduced by Yves Meyer for textures in
image processing, which seems convenient since it all! ows oscillations. The price to pay is now to face
non linearities, which is done through a pseudo dualization method proposed by Chaabane and Kunisch.

Numerical trials are currently on the way, which should allow us to present some numerical results during
the conference.
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